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Abstract. It is well-known that 1D systems with only nearest neighbour interaction exhibit no phase
transition. It is shown that the presence of a small long range interaction treated by the mean field
approximation in addition to strong nearest neighbour interaction gives rise to hysteresis curves of large
width. This situation is believed to exist in spin crossover systems where by the deformation of the spin
changing molecules, an elastic coupling leads to a long range interaction, and strong bonding between the
molecules in a chain compound leads to large values for nearest neighbour interaction constants. For this
interaction scheme an analytical solution has been derived and the interplay between these two types of
interaction is discussed on the basis of experimental data of the chain compound [Fe(Htrz)2(trz)](BF4)2

which exhibits a very large hysteresis of 50 K above RT at 370 K. The width and shape of the hysteresis
loop depend on the balance between long and short range interaction. For short range interaction energies
much larger than the transition temperature kBTt the hysteresis width is determined by the long range
interaction alone.

PACS. 64.30.+t Equations of state of specific substances – 64.60.Cn Order-disorder transformations;
statistical mechanics of model systems

1 Introduction

Many features of thermal spin transition curves are repro-
duced by a free energy function which describes a solid so-
lution of high spin (HS) and low spin (LS) molecules with
an interaction term according to mean field theory. The
population of the spin states of isolated non-interacting
molecules as obtained in diluted mixed crystal systems fol-
lows the Boltzmann law so that the fraction of molecules
in the HS state γH is determined by the partition functions
ZHS(T ) and ZLS(T ), in which the energy levels of the HS
states and LS states, respectively, are counted separately.

ZQ(T ) =
∑
i

exp(−βEQi ), Q = HS,LS

γH =
ZHS(T )

ZHS(T ) + ZLS(T )
(1)

where β = kBT and kB is the Boltzmann constant. In-
troducing the partial free energies FQ = −kBT ln(ZQ(T ))
of the pure HS and LS states, the thermal equilibrium
of molecules in the HS and LS state are equivalently ob-
tained from the minimum of the free energy expression

a e-mail: spiering@iacgu7.chemie.uni-mainz.de
b CNRS-URA 1531

for non-interacting molecules, FB(γH, T ) = γHFHS(T ) +
(1− γH)FLS(T )− TSmix with the mixing entropy Smix =
−kB[γH ln γH + (1− γH) ln(1− γH)].

The observed deviations from Boltzmann population
in pure compounds has been accounted for by adding to
FB a term W = ∆γH − Γγ2

H,

F (γH, T ) = γHFHS(T ) + (1− γH)FLS(T )− TSmix +W
(2)

which can be considered as an expansion of F = FB+W to
second order in γH. This free energy first used by Drick-
amer et al. [1] explains the different steepnesses of the
observed transition curves from gradual to abrupt transi-
tions, and also hysteresis curves for sufficiently large values
of Γ . Γ has to be interpreted as an interaction constant
describing the interaction between molecules in the HS
state in mean field theory.

The interpretation of Γ based on the properties of the
spin changing molecules and their lattice has been one
of the aims in spin crossover research. The increase of
bond length of the molecules changing from LS to the HS
state suggest, elastic interaction contributes to Γ [2,3].
The observation by X-ray diffraction that the change of
volume and shape of the crystal accompanying the spin
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transition is proportional to the HS fraction γH has given
the impetus for a detailed evaluation of the contribu-
tion of the elastic interaction [4,5]. The spin changing
molecules are considered as elastic dipoles in a homo-
geneous medium. The dipole strength can be calculated
from the deformation tensor of the crystal changing the
spin state and the elastic constants of the crystal. For the
compound [Fe(2 − pic)3]Cl2 · EtOH the elastic contribu-
tion to the interaction constant was estimated to be of
the size of the value used to fit the spin transition curve
[5]. A typical bulk modulus of organometallic compounds
was inserted. In case of the compound [Fe(ptz)6](BF4)2

the elastic properties were measured by Brillouin spec-
troscopy [6]. In that case about 80% of the fitted interac-
tion constant, that is 100 cm−1, has been calculated from
the elastic dipole interaction. From these theoretical con-
siderations and experimentally known properties of these
types of compounds the elastic long range contribution
seems to be limited to values less than Γ < 200 kB K. Us-
ing elasticity theory down to intermolecular distances in
[Fe(ptz)6](BF4)2 of 10 Å, elastic interaction energy differ-
ences of 30−40 cm−1 are calculated for the situation of two
LS molecules, one of them changing to the HS state [7].
Short range interaction constants have been derived from
thermal transition curves in [FexZn1−x(2-pic)3]Cl2· EtOH
exhibiting a two step transition [8] and the anomalous de-
cay of the neat compound in the tunnelling region at 20 K
[9]. Both phenomena could be well simulated with a short
range interaction of antiferromagnetic type between two
HS states of −17 cm−1 which is less than the estimated
values above.

Stronger short range interactions are expected for spin
crossover compounds with a “direct” intermolecular bond-
ing. A short range interaction constant of −40 cm−1 was
fitted to the two step thermal spin transition of bin-
uclear compound [Fe(bt)(NCS)2]2bpym (bt = 2,2’-bi-2-
thiazoline and bpym = 2,2’-bipyrimidine) [10]. Here the
two iron ions are bridged by a bt ligand such that the
spin state change of one of the iron ions may, by electron
flow or by the displacement of the ligand as a result of the
change of the bond length, directly influence the ligand
field strength of the other iron ion.

The large hysteresis width of 50 K at 370 K ob-
served for the compound [Fe(Htrz)2(trz)](BF4)2 (Htrz=
1,2,4-4H-triazole; trz= 1,2,4-triazolato) [11] is beyond the
widths which can be simulated on the basis of equation (2)
with interaction constants as mentioned above. The basic
structure of this material is a linear chain structure with
octahedral Fe-(Htrz)6 chromophores linked to each other
through the 1, 2 nitrogen position of three triazole lig-
ands [12]. The authors [12] raised the question whether
there is an intimate relation between strong cooperativ-
ity and polymeric nature. First we state that short range
(i.e. nearest neighbour) interactions do not lead to phase
transitions independent of the size of the interaction. This
statement is based on the well-known fact that the Hamil-
tonian (free energy) describing spin crossover systems can
be mathematically mapped onto Ising systems [13–15] and
that 1D systems do not order spontaneously if the inter-

action decreases faster than J(k) = k−2 for the kth neigh-
bour [16]. The key to understanding strong cooperativity
may be long range elastic interactions which are present in
any case and effectively introduce an interaction between
the infinite chains. The study of this interaction scheme is
the goal of this work.

2 Theoretical considerations

The interaction energy between two lattice sites at posi-
tions i and j in the crystal lattice may be expressed by

terms PiAijP
†
j , where P and A are tensors. Aij depends

on the distance between sites i, j. In elasticity theory the
second rank tensors P represent point defects and Aij are
fourth rank tensors. In a spin crossover system the de-
formation of the lattice accompanying the spin transition
has been traced back to point defects at the iron ion of the
spin changing molecule [4]. Elastic dipole tensors PH and
PL have been attributed for the molecule in the HS and
LS states, respectively. The interaction energy between all
molecules is the double sum:

EI =
1

2

∑
i6=j

PiAijP
†
j . (3)

This sum implies that the tensors PQ (Q = HS,LS) are
independent of the spin state of the neighbouring mole-
cules as already implied by the description as point de-
fects embedded in an elastic medium. For crystals with
one site per unit cell all tensors PQ in the crystal are
identical, the same principal values and the same orien-
tation at each site. For short range interaction between
molecules in a binuclear compound or a polymeric chain
compound, where not only displacements give rise to en-
ergy shifts but also a redistribution of electrons within
the common ligand of two spin changing iron atoms,
the meaning of the tensors P and A may change. How-
ever, we will assume that still well defined quantities
PH and PL can be attributed to atoms in the HS and
LS state, respectively. Then this interaction energy can
be expressed by operators σi with eigenvalues ±1. With
Pi = (1/2)(PH

i (σi+1)−PL
i (σi−1)), which gives back PH

i ,
PL
i for σi = ±1, respectively, the interaction sum consists

of three terms:

EI =
1

8

∑
i6=j

σiσjP
HL
i AijP

HL†
j

+
1

4

∑
i6=j

σiP
HL
i Aij(P

H†
j + PL†

j )

+
1

8

∑
i6=j

(PH
i + PL

i )Aij(P
H†
j + PL†

j ). (4)

In the first and second term enter the difference of the
tensors PHL = PH − PL. For simplicity the unit cell of
the lattice shall contain only one iron atom such that
the subscripts i, j of the lattice sites can be omitted from
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the elastic dipole tensors. Then equation (4) can be sim-
plified to

EI = −
1

2

∑
i6=j

Jijσiσj +
∑
i

∆1σi +∆2

Jij = −
1

4
PHLAijP

HL†

∆1 =
1

4
NPHLĀ(PH† + PL†)

∆2 =
1

8
N2(PH + PL)Ā(PH† + PL†)

Ā = N−2
∑
i6=j

Aij . (5)

With this notation the interaction energy between two
sites is the same for HS-HS and LS-LS interaction, namely
Jij , and has the opposite sign for an interaction between
HS and LS sites. This symmetry is obtained by the ap-
propriate linear term ∆1(σi + σj) and a constant energy
shift ∆2.

The Ising Hamiltonian for a chain compound of m
chains and n atoms per chain can now be written down. If
ik is the index of an atom belonging to chain k, then the
effective Hamiltonian H is given by:

H =
∑
k

∑
ik

{FmHS(T )
1

2
(σik + 1)− FmLS(T )

1

2
(σik − 1)

+∆1σik} −
1

2

∑
k,k′

∑
ik 6=jk′

Jikjk′σikσjk′ +m∆2. (6)

The Hamiltonian is called effective because the Hamilto-
nian of the atom ik with infinite numbers of eigenvalues
belonging to the HS and LS state of the atom is replaced
by their free energies. This is possible as the full partition
function can be partially carried out [15], namely ZmHS(T )
and ZmLS(T ), and their free energies included in an effective
two state Hamiltonian. In a next step, the interaction term
is split up for short range interaction within the chains and
long range interaction between all atoms, which is treated
in mean field approximation by replacing σjk′ by its mean
value 〈σ〉. Omitting constant energy terms and denoting
∆FmHL = FmHS − F

m
LS equation (6) becomes:

H =
∑
k

∑
ik

1

2
(∆FmHL(T ) + 2∆1

−
∑
k′jk′

Je
ikjk′
〈σ〉)σik

−
1

2

∑
k

∑
ikj

n
k

Jc
ikj

n
k
σikσjnk . (7)

The index jnk runs over the two neighbours in a chain. The
interaction constant inside the chain has the superscript
c. It shall be the same for the two neighbours such that
Jc = Jc

ikj
n
k

does not depend on the site. The superscript e

stands for the elastic long range interaction in the double
sum

∑
k′jk′

Je
ikjk′

which is also independent of the index

ik, because all sites ik shall be equivalent. It is replaced by
its average: nmJ̄e. The linear term in σi does not depend
on any index and can therefore be treated as a field B
acting on each site. The contribution (1/2)nmJ̄e〈σ〉 is the
mean field of the elastic long range interaction

B(T, 〈σ〉) = −
1

2
(∆FmHL(T ) + 2∆1 − nmJ̄e〈σ〉). (8)

When inserting B(T, 〈σ〉) into equation (7) one recognises
that the Hamiltonian can be written as a sum

∑m
k Hk of

m independent Hamiltonians Hk of infinite chains in an
applied field of energy Bσi

Hk = −Jc
n∑
ik

σikσik+1 −B
n∑
ik

σik . (9)

The well-known closed analytical solution for the free en-
ergy of Hk obtained by the transfer matrix method and
its derivative is given by [16]

Fk(T,B) = −kBT ln{eβJ
c

cosh(βB)

+[e2βJc

sinh2(βB) + e−2βJc

]
1
2 }〈

n∑
ik

σik

〉
=

∂

∂B
(−
Fk(B, T )

kBT
)

=
sinh(βB)

[sinh2(βB) + e−4βJc ]
1
2

· (10)

Inserting B from equation (8) this equation (10) rep-
resents an implicit equation for the expectation value
〈σ〉=〈

∑n
ik
σik〉. In the limit of Jc = 0 the implicit equa-

tion is obtained when derived from the mean field free
energy equation (2) with the HS fraction γH = (〈σ〉+1)/2
as order parameter. Comparison of the coefficients give
the relations between the interaction constants and en-
ergy shifts of both representations

Γ = nmJe and ∆ = 2∆1 + nmJe. (11)

The opposite limit of infinite interaction Jc inside the
chain reduces the implicit equation to

〈σ〉 =
sinh(βB)√
sinh2(βB)

· (12)

The solution is 〈σ〉 = ±1 with the change of sign at
B(〈σ〉, T ) = 0. The two temperatures for 〈σ〉 = ±1 de-
fine the widths of the hysteresis for this limit. Expanding
∆Fm(T ) the condition reads

∆FmHL(Tt)−∆S
m
HL(Tt)(T − Tt) + 2∆1 − Γ 〈σ〉 = 0 (13)

where −∆Sm is inserted for the derivative ∂Fm/∂T . For
〈σ〉 = ±1, this condition determines the temperatures T ↓

and T ↑, respectively, so that the hysteresis widths ∆T =
T ↑−T ↓ depend only on the infinite range interaction and
the molecular entropy change at temperature Tt

∆T =
2Γ

∆SmHL(Tt)
· (14)
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Fig. 1. HS fraction γH versus temperature T in the warm-
ing (4) and cooling mode (5) for the chain compound
[Fe(Htrz)2(trz)](BF4).

As with increasing interaction constants hysteresis widths
are increasing, the above value represents an upper limit
for a fixed infinite range interaction constant Γ .

Finally the total enthalpy and entropy difference at
a temperature Tt between the system in the HS and the
LS state are given in order to compare with thermody-
namic data. In the limit of infinite intra-chain interaction
Jc = ∞ the interaction parameter does not enter the ex-
pressions. As in mean field theory the simple relation be-
tween molecular properties ∆Hm

HL,∆S
m
HL of noninteract-

ing molecules and ∆HHL,∆SHL of the interacting system
are obtained

∆S(Tt) = ∆SmHL(Tt)

∆H(Tt) = ∆SmHL(Tt)Tt. (15)

∆HHL,∆SHL in this context are also understood as quan-
tities per molecule.

3 Discussion

The spin transition curve of the chain compound
[Fe(Htrz)2(trz)](BF4)2 derived from susceptibility data
[11] is shown in Figure 1. The large hysteresis width of
∆T = T ↑ − T ↓ = 50 K at a high transition tempera-
ture Tt = (T ↑ + T ↓)/2 = 370 K, when simulated in mean
field theory (Eq. (2)), requires an interaction parameter
Γ/kB = 1330 K (Fig. 2) which is far beyond the contribu-
tion expected from elasticity theory.

The simulated S-shaped curve γH(T ) in Figure 2 rep-
resents the extrema of the free energy. The transition
temperatures are given by the infinite slopes of γH(T ).
The free energy is completely defined by the difference
of the molecular entropies ∆SmHL(Tt), the temperature Tt

and the interaction constants. Using the specific heat data
[11] of the compound the molecular entropy difference de-
rived from the large enthalpy change of 27 kJ mol−1 ac-
cording to equation (15) amounts to 12.18 kB. In the two
cases of mean field limit (Jc = 0) and strong chain in-
teraction limit(Jc = ∞) equation (15) is valid. For the

Fig. 2. The HS fraction γH = (〈σ〉 + 1)/2 which minimizes
or maximizes the free energy for a chain compound is plot-
ted versus temperature T . (a) The S-shaped curve which leads
to a hysteresis width of 50 K is calculated in mean field ap-
proximation with Γ/kB = 1330 K and the second curve with
Γ/kB = 210 K and Jc/kB = 560 K (see text). (b) Curves
with increasing intra-chain interaction constants Jc/kB = 240,
400, 800, 2000 K and a fixed mean field long range interac-
tion constant Γ/kB = 210 K are shown for comparison of the
shapes. Jc/kB = 240 K is the limit for a hysteresis transi-
tion. The curves become S-shaped for larger values of Jc. For
Jc/kB = 2000 K the curve is almost Z-shaped and represents
the limit Jc =∞.

range of parameters under discussion∆SHL(Tt) of the sys-
tem has been calculated numerically and deviated only by
few %, so that the value of 12.18 kB for ∆SmHL(Tt) is used
throughout.

Comparing the shape of the experimental transition
curve and simulated S-shaped curve in Figure 2a with
∆T = 50 K the curvatures at temperatures T ≥ T ↓ and
T ≤ T ↑ are much more pronounced for the S-shaped
curve. The abruptness of the transitions obviously can-
not be obtained in mean field theory. Figure 2b shows
solutions of equation (10) for different values Jc of the
intra-chain interaction and a fixed value Γ/kB = 210 K for
the long range interaction treated in mean field approxi-
mation. This value has been calculated from equation 14
inserting ∆T = 50 K and the ∆SmHL(Tt) value from above,
so that Γ/kB = 210 K has to be considered as a lower
limit for the long range contribution, which gives the hys-
teresis width of ∆T = 50 K in case of very large intra
chain interaction. For Jc/kB = 2000 K a Z-shaped curve
is calculated meaning that the curvatures at temperatures
T ≥ T ↓ and T ≤ T ↑ are vanishing. With decreasing Jc the
hysteresis width decreases, the curvatures are increasing,
and for Jc/kB = 240 K the hysteresis vanishes.
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Fig. 3. With the measured values of molecular entropy dif-
ference ∆SmHL(Tt) and the transition temperature Tt = 370 K
the interaction constant Γ is plotted versus the intra-chain in-
teraction Jc as necessary for the observed hysteresis widths of
50 K in the upper curve. The lower curve shows the depen-
dency of the hysteresis width on the intra-chain interaction Jc

at constant Γ/kB = 210 K.

The experimental transition curve with its small cur-
vatures seems to be close to the limiting case such that the
value of Γ is close to its lower limit and Jc is very large,
of the order of 1000 K. In Figure 3 the pairs of values Γ
versus Jc for the measured hysteresis widths are plotted.
The lower limit Γ = 145 cm−1 is of the size which has
been estimated for the compound [Fe(2−pic)3]Cl2 ·EtOH
[5]. Much higher values are not expected on the basis of
elasticity theory. Consequently a very large intra-chain in-
teraction is required in the present interaction scheme.
Whether such large nearest neighbour interactions by lig-
and bridged iron atoms are realistic is an open question,
but there must be large interactions as is obvious from the
mean field approximation.

The following argument may support this view. As any
interaction scheme can be treated in the mean field ap-
proximation, the mean field approximation of equation (9)
shall be considered. The total mean field interaction value
is Γm = Γ+2Jc where the factor 2 stems from two nearest
neighbours. Γm/kB = 1330 K fits the hysteresis width of
50 K. Γ/kB fixed to the lower limit of 210 K an intra-chain
interaction of Jc/kB = (1330 K−210 K)/2 is needed in the
mean field approximation. This value however does not re-
produce the widths of 50 K in the exact calculation as is
shown in Figure 2a by the narrower S-shaped curve. This

means that the mean field approximation underestimates
the interactions.

In Figure 3 the hysteresis width versus intra-chain in-
teraction with fixed Γ is also plotted. At Jc/kB = 240 K
the width vanishes and at lower values the transition be-
comes more and more gradual.

Summarising the situation we are faced with, the inter-
action scheme of strong intra-chain interaction and long
range interaction between all spin crossover molecules re-
quires on the one hand long range interaction constants
which are in the range of the contributions from elastic
interactions, and on the other hand very large short range
nearest neighbour interaction of the order of 1000 cm−1

inside the chain.
The interplay between long range and strong short

range interaction of layer compounds shall be explored
by Monte-Carlo simulation in a future work.
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